

JMOB Open Access DOAJ

OPEN ACCESS

ARTICLE INFO

Received: 12/03/2024 Revised: 12/04/2024 Accepted: 25/06/2024 Publish online: 29/06/2024

* Corresponding Author : Email: nasmyd@gmail.com

https://orcid.org/0009-0005-7616-3740

CITATION

Naseer A Nasir, Karima Akool Al Salihi, Zeena Tariq (2024). Human Ameloblastoma: Pathogenesis, Clinical Presentation, Management, and Future Perspectives: A brief Review. JMOB. 1;(1): 30-36.

DOI: https://doi.org/10.58564/jmob.101

COPYRIGHT

License Term: Creative Commons Attribution-Share Alike (CC BY-SA) 4.0

© 2024 Naseer A Nasir, Karima Akool Al Salihi, Zeena Tariq

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC Attribution-ShareAlike 4.0/ CC BY-SA 4.0). This licensing model supports open access and ensures that the research published in the journal is freely available to the global academic community and beyond, fostering the sharing and dissemination of knowledge. The use, distribution or reproduction in other forums is allowed, provided the original author(s) and the copyright

Academic Scientific Journals TYPE: Review Article Published: 29 June 2024

Human Ameloblastoma: Pathogenesis, Clinical Presentation, Management, and Future Perspectives: A brief Review

Naseer A Nasir ^{1a} , Karima Akool Al Salihi ^{1b} , Zeena Tariq Abdulhadi ^{1c}

¹ College of Dentistry / Al- Iraqia University/Iraq/ Baghdad / Adhamiyah/ Hibat Katon, street 22, district 308. P O Box: Haifa: 7366.

^a ORCID **b** https://orcid.org/0009-0005-7616-3740
^b ORCID **b** https://orcid.org/0000-0002-5698-2678
^c ORCID **b** https://orcid.org/0000-0002-3724-3677

Abstract

Ameloblastoma, a benign yet locally aggressive odontogenic tumor poses significant diagnostic and therapeutic challenges. This review intends to present a synopsis of human ameloblastoma's different aspects, including its pathogenesis, clinical presentation, diagnostic modalities, treatment strategies, and emerging research avenues from previously reported articles. By analyzing existing literature and clinical insights, this manuscript improved the understanding and facilitated optimal management of ameloblastoma, the complex pathology.

Keywords: Ameloblastoma, odontogenic tumor, clinical presentation, management, molecular markers.

Introduction

Ameloblastoma represents one of the most clinically challenging odontogenic tumors encountered in dental and maxillofacial practice (1, 2). Despite its benign nature, the propensity for local aggressiveness and high recurrence rates pose significant clinical dilemmas (3). This review explains current knowledge on ameloblastoma, focusing on its etiology, histopathological characteristics, clinical presentation, diagnostic modalities, treatment options, and emerging therapeutic strategies.

Etiology and Pathogenesis

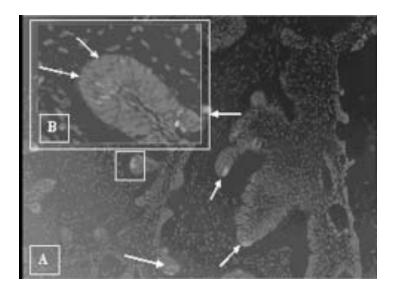
The precise etiology of ameloblastoma remains vague (4,5), while various genetic, molecular, and environmental factors have been implicated. Recent research suggests the multifactorial pathogenesis involving dysregulation of signaling pathways such as Wnt/ β -catenin, Sonic Hedgehog, and Notch (6). Moreover, mutations in genes like BRAF and CTNNB1 have been determined in some cases (7). Understanding the molecular mechanisms underlying ameloblastoma development is crucial for targeted therapeutic interventions (8,9).

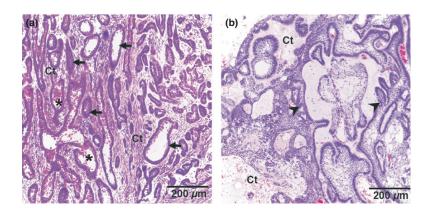
Clinical Presentation

Clinically, ameloblastomas often manifest as slow-growing, painless swellings in the jawbones, most commonly the mandible (10, 11). Radiographically, they present as radiolucent lesions with well-defined borders, exhibiting unilocular or multilocular patterns (12, 13), associated with variations in clinical appearance depending on the histological subtype, tumor size, and anatomical location, necessitating comprehensive evaluation for accurate diagnosis and treatment planning (Figure.1) (8,13).

Figure.1: shows widespread right maxillary ameloblastoma comprising facial disfigurement and displacement of teeth. (Effiom OA, Ogundana OM, Akinshipo AO, Akintoye SO. Ameloblastoma: current etiopathological concepts and management. Oral Diseases. 2018;24:307–316 doi:10.1111/odi.12646)

Histopathological Features


Histologically, ameloblastomas display diverse morphological patterns, including follicular, plexiform, acanthomatous, and basal cell types (Figure. 2, 3) (1, 13). The characteristic features include islands or strands of odontogenic epithelium with peripheral palisading and central stellate reticulum-like cells (9). Variations in stromal



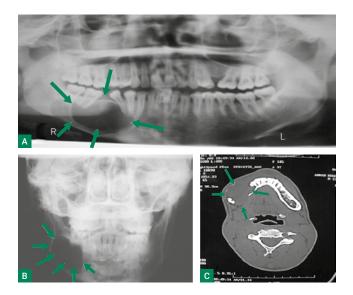
JMOB / Al-Iraqia University

components, such as fibrosis, calcification, or cystic degeneration, further contribute to histopathological diversity and may influence clinical behavior.

Figure.2: Shows the immunohistochemistry stain for p53 in ameloblastoma Variant type A: X200 magnification, B: X360 magnification. (Al-Salihi KA and Ling Yoke Li and Ahmad Azlina. P53 gene mutation and protein expression in ameloblastomas. Braz J Oral Sci. 2006;5(17): 1034-1040.

Figure.3: Displays conventional ameloblastoma (solid/ multicystic). a: Follicular ameloblastoma; b. Plexiform ameloblastoma (Effiom OA, Ogundana OM, Akinshipo AO, Akintoye SO. Ameloblastoma: current etiopathological concepts and management. Oral Diseases. 2018;24:307–316 doi:10.1111/odi.12646)

Diagnostic Modalities


Accurate diagnosis of ameloblastoma relies on clinical, radiographic, and histopathological assessments (12, 14, 13). Imaging modalities such as panoramic radiography, computed tomography (CT), and magnetic resonance imaging (MRI) help assess the extent of tumor involvement and guide surgical planning (Figure 4). Fine-

JMOB / Al-Iraqia University

needle aspiration cytology (FNAC) may provide preoperative diagnostic information, although definitive diagnosis requires histopathological examination of biopsy specimens (15).

Figure.4: Displays ameloblastoma variant type. A & C: OPG and MRI showing uninoculated radiolucency with smooth borders and displacement of teeth. B: a radiolucent area in the right angle of mandible. (Al-Salihi K A, Ihsan Abdullah, Ling Yoke Li Clinico-radiologic features of four cases of Ameloblastoma. Brazilian Journal of Oral Sciences. 2018; 17:e18028. http://dx.doi.org/10.20396/bjos.v17i0.8651903).

Treatment Strategies

Surgical treatment, including resection, remains the primary treatment method for ameloblastoma, aiming for complete excision while preserving function and aesthetics (16). Various surgical approaches may be employed based on tumor size, location, and histological subtype, including conservative enucleation, curettage, segmental resection, and reconstruction with bone grafts or alloplastic materials. However, some adjuvant treatments like chemotherapy and radiation are committed for select cases with aggressive behavior or unresectable disease (16).

Recurrence and Prognosis

Despite adequate surgical treatment, ameloblastomas exhibit a high propensity for recurrence, necessitating long-term follow-up and vigilant surveillance (15, 16). The risk of recurrence varies depending on factors such as histological subtype, surgical technique, and margin status. Early detection of recurrence enables prompt intervention, potentially improving patient outcomes and minimizing morbidity.

Emerging Therapeutic Strategies

Recent advances in molecular biology and targeted therapy offer promising opportunities for managing ameloblastoma (7,17). Identifying molecular markers and signaling pathways implicated in tumor pathogenesis may facilitate the development of novel targeted agents or immunotherapeutic approaches. Besides, progress in regenerative medicine and tissue engineering has the potential for innovative reconstructive strategies post-surgery (16).

Conclusion

Ameloblastoma poses significant diagnostic and therapeutic challenges due to its locally aggressive behavior and high recurrence rates. The multidisciplinary approach involving oral and maxillofacial surgeons, pathologists, radiologists, and oncologists is essential for comprehensive management. Further research focusing on elucidating the molecular mechanisms, identifying predictive biomarkers, and exploring targeted therapeutic interventions is affirmed to enhance patient outcomes and quality of life.

DECLARATIONS

Funding

This work received no funding from any third party.

Competing interests statement

The authors declare that they have no conflict of interest upon publish this article.

Ethics statement

The authors confirm that the ethical policies of the journal, as noted on the journal's author guidelines page, have adhered to.

Author contributions

NAN: worked with collection of previously published article and wrote the first draft of the manuscript; KAA: provided the concepts of this brief review, and review the previously published articles which used in writing this article, in addition to review the final draft; ZTA: revised the article items and final draft.

Acknowledgments

The authors would like to thank the English language editor of this manuscript for his free of charge editing and valuable comments.

References

- 1. Al-Salihi KA and Ling Yoke Li and Ahmad Azlina. P53 gene mutation and protein expression in ameloblastomas. Braz J Oral Sci. 2006;5(17): 1034-1040.
- 2. Kshirsagar K, Patil P, Munde A, Gadbail A, Sonune S, Chaudhary M. Role of immunomarkers in the pathogenesis and malignant transformation of ameloblastoma: A systematic review. J Oral Maxillofac Pathol. 2020;24(2):233-240. doi:10.4103/jomfp.JOMFP 230 20.
- 3. Vered M, Shohat I, Buchner A, Dayan D. Myofibroblasts in stroma of odontogenic cysts and tumors can contribute to variations in the biological behavior of lesions. Oral Oncol. 2005;41(10):1028-33. doi:10.1016/j.oraloncology.2005.06.005.
- 4. Hanemann JAC, Oliveira DT, Garcia NG, et al. CD4+/CD8+ ratio in ameloblastomas and its correlation with clinicopathological parameters. J Oral Pathol Med. 2021;50(1):54-59. doi:10.1111/jop.13095.
- 5. Braimah RO, Anyanechi CE, Okoye C, et al. Ameloblastoma: A 10-year experience and a review of the literature in a Nigerian tertiary hospital. Niger J Clin Pract. 2018;21(10):1327-1333. doi:10.4103/njcp.njcp 138 18.
- 6. Iordanidis S, Makos C, Dimitrakopoulos J, Kariki H, Perdikaris A, Kalyvas D. Ameloblastoma: Clinicopathological analysis of 47 cases. Eur J Cancer B Oral Oncol. 1996;32B(5):322-325. doi:10.1016/0964-1955(96)00005-7.
- 7. Rosli TI, Halim AS, Ramli R. Immunohistochemical Expression of p53 in Ameloblastoma. Sains Malaysiana. 2011;40(3):221-226. [DOI: 10.1007/s10284-021-04234-x]
- 8. Kishore M, Panat SR, Shenoy RK. Metastasizing ameloblastoma: A clinico-pathological insight. Contemp Clin Dent. 2016;7(2):251-254. doi:10.4103/0976-237X.183063.
- 9. Tiwari A, Garg A, Gandhi S, Mishra A, Tandon P, Singh A. Ameloblastoma: Current etiopathological concepts and management. Oral Maxillofac Surg. 2021;25(3):277-287. doi:10.1007/s10006-021-00966-1.
- 10. Ricciardiello F, Caradonna L, Ventura G, et al. A case of ameloblastoma with a rare anatomical location: A comprehensive review of the literature. Case Rep Med. 2021;2021:6635395. doi:10.1155/2021/6635395.
- 11. Kumar A, Kumar V, Singh AK, Sharma A, Yadav A. Ameloblastoma: A comprehensive review and recent updates. J Oral Biosci. 2021;63:258-266. doi:10.1016/j.job.2021.06.006.
- 12. Ng KH, Siar CH. Ameloblastomas in Malaysians: a histopathological survey using modified WHO diagnostic criteria. J Nihon Univ Sch Dent. 1997;39(2):97-104. [PMID: 9246934]
- 13. Effiom OA, Ogundana OM, Akinshipo AO, Akintoye SO. Ameloblastoma: current etiopathological concepts and management. Oral Diseases. 2018;24:307–316 doi:10.1111/odi.12646
- 14. Ong ST, Siar CH. Expression of P53 Protein and Ki-67 Antigen in Ameloblastomas. Journal of Oral Pathology & Medicine. 1998;27(8):376-382. [DOI: 10.1111/j.1600-0714.1998.tb02038.x]

- 15. Al-Salihi K A, Ihsan Abdullah, Ling Yoke Li. Clinico-radiologic features of four cases of Ameloblastoma. Brazilian Journal of Oral Sciences. 2018; 17:e18028. http://dx.doi.org/10.20396/bjos.v17i0.8651903
- 16. Ghandhi D, Ayoub AF, Pogrel MA, MacDonald G, Brocklebank LM, Moos KF. Ameloblastoma: A surgeon's dilemma. J Oral Maxillofac Surg. 2006;64(7):1010-1014. doi:10.1016/j.joms.2006.02.022.
- 17. Kallarakkal TG, Ibrahim WN, Wastie ML, Zain RB. P53 expression in ameloblastoma and keratocystic odontogenic tumor: comparison of two antibodies. Biotech Histochem. 2014;89(8):588-592. [DOI: 10.3109/10520295.2014.927335]

